G169R mutation diminishes the metabolic activity of CYP2D6 in Chinese.
نویسندگان
چکیده
The molecular basis of the reduced ability of a Chinese to metabolize debrisoquine was explored by sequencing all of the nine exons of the CYP2D6 gene. The subject has T188, A1846, T2938, and C4268 (CYP2D6*14) instead of C188, G1846, C2938, and G4268 as in wild-type subjects. XbaI restriction fragment length polymorphism indicated that the subject has a 29-kb allele and a gene deletion (11.5 kb) in another allele (CYP2D6*5). A CYP2D6*14 allele together with a CYP2D6*5 allele may cause the poor metabolism of the subject. T188, T2938, and C4268 are common haplotypes in Chinese-extensive metabolizers. The effect of G1846 to A mutation in CYP2D6 metabolism has not been reported. A polymerase chain reaction-based endonuclease digestion test was designed for the G/N1846 polymorphism and 124 Chinese subjects were screened. With DNA sequencing, two other subjects showed the heterozygous G/A1846 and have a relatively high metabolic ratio of debrisoquine hydroxylation. The site-directed mutagenesis was used to create recombinant CYP2D6 cDNA with T188, A1846, or C4268. The cDNA was then transfected into Rat-1 cells. The transfection was confirmed by Southern, Northern, and Western blots. Based on the same microsomal protein level, the bufuralol 1'-hydroxylation activity of CYP2D6(T188) or CYP2D6(A1846) was significantly lower than that of the wild-type CYP2D6. P34S mutation (C188 to T) significantly decreased CYP2D6 activity. G169R mutation (G1846 to A) also decreased CYP2D6 activity and may further reduce the metabolic activity of CYP2D6 protein with P34S, R296C, and S486T mutations.
منابع مشابه
Effects of G169R and P34S substitutions produced by mutations of CYP2D6*14 on the functional properties of CYP2D6 expressed in V79 cells.
CYP2D6 is a polymorphic enzyme that catalyzes the oxidation of various drugs. At least 40-mutant alleles of CYP2D6 have been reported. CYP2D6*14, which is one of them found in Asian populations, causes deficient activity of CYP2D6. Four amino acid substitutions, P34S, G169R, R296C, and S486T, are present in the protein encoded by CYP2D6*14 (CYP2D6 14). Among them, G169R is thought to be a defin...
متن کاملMetabolic capacity of CYP2D6 within an Iranian population (Mazandaran Province)
Background: CYP2D6 is polymorphically expressed enzyme that show marked interindividual and interethnic variation. Phenotyping of CYP2D6 provides valuable information about real-time activity of this important drug-metabolizing enzymes through the use of specific probe drugs. The aim of this study was to identify the CYP2D6 oxidation phenotype with dextromethorphan (DEX) as a probe drug in Maza...
متن کاملP-192: Association of Cytochrome P450 2D6 (CYP2D6) Gene Polymorphism with Clomiphene Citrate Treatment in Iranian Infertile Women with Polycystic Ovary Syndrome
Background: Clomiphene Citrate (CC) is the most frequently administered drug for the treatment of female infertility [e.g. polycystic ovary syndrome (PCOS)]; which aims at restoring ovulation. Clomiphene is metabolized by CYP2D6, an important enzyme responsible for the metabolism of approximately 25% of clinically used drugs. CYP2D6 is very polymorphic and thought to result in inter- individual...
متن کاملSynthesis, In Vitro activity and Metabolic Properties of Quinocetone and Structurally Similar Compounds
To investigate the cytotoxicity mechanism of quinocetone from the perspective of chemical structure, quinocetone and other new quinoxaline-1,4-dioxide derivatives were synthesized, and evaluated for their activities, and analysed for the metabolic characteristics. Quinocetone and other new quinoxaline-1,4-dioxide derivatives were synthesized, and evaluated for their activities, and analysed for...
متن کاملSynthesis, In Vitro activity and Metabolic Properties of Quinocetone and Structurally Similar Compounds
To investigate the cytotoxicity mechanism of quinocetone from the perspective of chemical structure, quinocetone and other new quinoxaline-1,4-dioxide derivatives were synthesized, and evaluated for their activities, and analysed for the metabolic characteristics. Quinocetone and other new quinoxaline-1,4-dioxide derivatives were synthesized, and evaluated for their activities, and analysed for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 27 3 شماره
صفحات -
تاریخ انتشار 1999